基于MBR组合优化算法的多尺度面实体匹配方法
- Allen
-
0 次阅读
-
0 次下载
-
2020-04-07 18:26:52
文档简介:
第47卷第5期测绘学报Vol.47,No.52018年5月ActaGeodaeticaetCartographicaSinicaMay,2018引文格式:刘凌佳,朱道也,朱欣焰,等.基于MBR组合优化算法的多尺度面实体匹配方法[J].测绘学报,2018,47(5):652G662.DOI:10.11947/j.AGCS.2018.20160625.LIULingjia,ZHUDaoye,ZHUXinyan,etal.AMultiGscalePolygonalObjectMatchingMethodBasedonMBRCombinatorialOptimizationAlgorithm[J].ActaGeodaeticaetCartographicaSinica,2018,47(5):652G662.DOI:10.11947/j.AGCS.2018.20160625.基于MBR组合优化算法的多尺度面实体匹配方法刘凌佳1,朱道也1,朱欣焰1,2,3,丁小辉4,呙维1,21.武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079;2.武汉大学地球空间信息技术协同创新中心,湖北武汉430079;3.武汉大学空天信息安全与可信计算教育部重点实验室,湖北武汉430072;4.中国科学院东北地理与农业生态研究所,吉林长春130102AMultiGscalePolygonalObjectMatchingMethodBasedonMBRCombinatorialOptimizationAlgorithmLIULingjia1,ZHUDaoye1,ZHUXinyan1,2,3,DINGXiaohui4,GUOWei1,21.StateKeyLaboratoryofInformationEngineeringinSurveying,MappingandRemoteSensing,WuhanUniversity,Wuhan430079,China;2.CollaborativeInnovationCenterofGeospatialTechnology,WuhanUniversity,Wuhan430079,China;3.KeyLaboratoryofAerospaceInformationSecurityandTrustedComputingofMinistryofEducation,WuhanUniversity,Wuhan430072,China;4.NortheastInstituteofGeographyandAgroecology,ChineseAcademyofSciences,Changchun130102,ChinaAbstract:AimingtosolvingtheproblemofpositionaldiscrepancyofcorrespondingobjectsinmultiGscalepolygonalobjectmatchingandthatthepotentialmatchingpairscan’tbedirectlyidentifiedbythemethodofarealoverlapping,itisproposedthatamultiGscalepolygonalobjectmatchingmethodbasedonminimumboundingrectanglecombinatorialoptimizationalgorithm.Thebasicideaofourmethodisthat:①identifyingthepotentialmatchingpairsof1∶1,1∶NandM∶Nwithcombinatorialalgorithmandsimpleshapecharacteristic;②establishingmultiGcharacteristicartificialneuralnetworkmodeltoevaluatethesepotentialmatchingpairs.Theproposedmethodisdemonstratedintheexperimentofmatchingbetween1∶2000and1∶10000polygonalobjectsofresidentialbuildingsandindustrialfacilitiesinZhoushan,ZhejiangProvince.Theexperimentalresultsshowedthattheproposedmatchingmethodshowsuperiorperformanceagainstamethodofareaoverlappingandartificialneuralnetwork.Itsp
评论
发表评论