基于改进的PSO和模糊RBF神经网络的MBR膜污染预测
- Allen
-
0 次阅读
-
0 次下载
-
2020-04-07 18:27:25
文档简介:
2018年软件2018,V〇1.39,No.8第39卷第8期_________________________COMPUTERENGINEERING&SOFTWARE________________________国际IT传媒品牌I金项玛办文金项玛办文基于改进的PSO和模糊RBF神经网络的MBR膜污染预测陶颖新,李春青,苏华陶颖新,李春青,苏华(天津工业大学计算机科学与软件学院)摘要:为了提高对MBR膜通量的预测精度,采用模糊径向基函数(RBF)神经网絡建立网絡预测模型,并釆用改进的粒子群(PSO)算法进行优化。采用模糊推理过程与RBF神经网络所具有的函数等价性,统一系统函数。在利用改进的PSO算法对模糊RBF神经网絡进行训练时,先利用改进PSO算法得到模糊RBF神经网絡的初始权值和阈值,然后对其进行二次优化得到最终的权值和阈值。实验仿真结果表明:本文的这种方法,缩短了响应时间,稳态误差很小,能够与膜通量的期望值更好的拟合,更好的预测膜通量。关键词:MBR;PSO;RBF中图分类号:TP39文献标识码:ADOI:10.3969/j.issn.l003-6970.2018.08.012本文著录格式:陶颖新,李春青,苏华.基于改进的PSO和模糊RBF神经网络的MBR膜污染预测[J].软件,2018,39(8):52-56PredictionofMBRMembranePollutionBasedonImprovedPSOandFuzzyRBFNeuralNetworkTAOYing-xin,LIChun-qing,SUHua{CollegeofComputerScienceandSoftware,TianjinPolytechnicUniversity,Tianjin,China)【Abstr狀t】:InordertoimprovethepredictionaccuracyofMBRmembraneflux,usingafUzzyRadialBasisFunc_tionneuralnetworktoestablishanetworkpredictionmodel,andusetheimprovedParticleSwarmOptimization(PSO)algorithmtooptimize.ThefunctionalequivalenceofthefuzzyinferenceprocessandtheRBFneuralnetworkisusedtounifythesystemfunction.WhenusingamodifiedPSOalgorithmtotrainafuzzyRBFneuralnetwork,First,usingtheimprovedPSOalgorithmtoobtaintheinitialweightsandthresholdsofthefuzzyRBFneuralnetwork,andthenperformasecondoptimizationonthemtogetthefinalweightsandthresholds.Theexperimentalsimulationresultsshowthatthismethodofthispapershortenstheresponsetime,hasasmallsteady-stateerror,andcanbetterfittheexpectedvalueofthemembranefluxandbetterpredictthemembraneflux.【Keywords】:MBR;PSO;RBF0IntroductionThemembranebioreactor(MBR)isanewwastewatertreatmenttechnology,whichcombinesmembraneseparationtechnologywithbioreactortechnol-ogy.MembranefluxisanimportantparameterintheMBRstudy.Membranefluxreflectsmembranefouling.ThepredictionofmembranepollutionthroughtheestablishmentofpredictionmodelshasbecomeanimportantresearchdirectioninMBRsimulation.Mostofthecommonlyusedpredictionmodelshavesomedefects,suchasinsufficientanalysisofthemembranefoulingmechanismandpoorpredictionaccuracy.I
评论
发表评论