第七章_空间解析几何与向量代数学习指导
- ECHO
-
51 次阅读
-
0 次下载
-
2019-03-20 09:45:58
文档简介:
第七章_空间解析几何与向量代数学习指导1第七章第七章空间解析几何与向量代数空间解析几何与向量代数在这一章中,首先建立空间直角坐标系,引进自由向量,并以坐标和向量为基础,用代数的方法讨论空间的平面和直线,在此基础上,介绍一些常用的空间曲线与曲面。通过这一章的学习,培养空间想象能力,娴熟的向量代数的计算能力和推理、演绎的逻辑思维能力。也为学习多元微积分做准备。重点:曲面方程,曲线方程难点:较深刻地理解曲面(平面)、曲线(直线)方程,并能把握方程所表示的图形的特征。(一)1.空间笛卡尔坐标系的构成:空间的一个定点O,连同三个两两互相垂直的有序向量组,称为笛卡尔坐标系。当1e,2e,3e的相互关系和右手拇指、食指、中指相同时,称为右手坐标系。在通常的讨论中,常用右手笛卡尔坐标系。关于一般的坐标系称为仿射坐标系,有兴趣的同学可参阅《空间解析几何》这类专业教材。2.空间向量可以从两个途径来认识:①由定义:具有大小和方向的量称为向量,因此可由方向(可由方向角来确定)连同大小(模长)来确定(注意,这样定义的向量称为自由向量,简称向量,自由向量与起点和终点无关)。书上往往用黑体字母表示,手写时用黑体并不方便,常在字母上面加一个箭头表示,例:AB,a等。②可由向量的坐标来把握向量。必须分清向量坐标与点坐标这两个概念,一般情况下,设zyxa,,的始点的坐标分别为321,,xxx,321,,yyy,则121212,,zzyyxxa,即向量的坐标与向量的起点及终点的坐标间有下列关系:12xxx,12yyy,12zzz。因此,若确定了向量的坐标,则这个向量就确定了。当向量的起点与坐标系的原点重合时,向量的坐标与向量的终点的坐标在数值上相等。3.在学习向量的代数运算时,利用几何或物理模型比较容易掌握。如求向量的加法和减法可以平行四边形或以力的相加或相减为模型,求两向量的数量积可以求力在某段路程上所作的功为模型,求两向量的向量积可以求力关于某点的力矩为模型,并要熟2练掌握每种运算的算律。4.一个平面具有各种形式的方程,如点法式,三点式,截距式,一般式。在学习平面的各种形式的方程时,对方程中常数的几何意义应引起充分的注意。如:平面方程0DCzByAx,则CBA,,为平面的一个法向量,建立平面的方程时应根据条件灵活处理。点法式方程是应用较方便,常
评论
发表评论